
GUIDELINES FOR QUALITY ASSURANCE USING SPECIFIC DATA FORMATS	34
GUIDELINES FOR QUALITY ASSURANCE USING SPECIFIC DATA FORMATS
The general guidelines for ensuring data quality are applicable to any data format, but there are also guidelines that apply specifically to certain formats commonly used in open data portals. Here are some relevant ones.
CSV: the most popular and simplest format for distributing data for reuse.
· Using semicolons (";") as delimiters: It is recommended to use semicolons [";"], as they are used less frequently. However, to avoid a comma being interpreted as a separator, it should be masked.
· Include one table of data per file: Each CSV file should only contain one table. If you are publishing a spreadsheet containing multiple sheets, you should create a CSV file for each sheet.
· Avoid including additional information in the data file: A CSV file should only contain the data that is going to be actionable in a reuse, i.e. the column header (optional) and the values of each record in the table.
· Ensure that all rows have the same number of columns: Each row or record in a CSV file must contain the same number of columns. This implies that each row must have the same number of delimiters.
· Include a single first row header: Data tables may optionally contain one and only one header line to specify field names. The header row is a type of annotation or metadata that names each column and is not part of the data.
XML: Standard format commonly used for the exchange of data between information systems.
· Provide an XML declaration: Each file must have a complete XML declaration and contain the metadata relating to the structure of the document so that applications can correctly process the file.
· Use escape characters: This ensures a robust file structure and prevents applications used to process the file from misinterpreting the data.
· Use meaningful names for identifiers: Both elements and attributes must have meaningful names and be used uniquely. 
· Use attributes and elements correctly to achieve maximum semantic expressiveness: One way is to represent the main information that is part of the data as elements and the metadata or properties that contain additional information as attributes.
· Eliminate editing software-specific data: XML, like any other open format, should always be independent of the programmes or tools used to process the files.
JSON: It is one of the most widely accepted standard formats among application developers.
· Use appropriate data types: For correct processing it is essential to use the appropriate data types. Otherwise, errors may occur due to the encoding of impermissible values.
· Use hierarchies to group data: Data should be grouped semantically. This practice improves human readability and performance when processing the file.
· Use arrays, only when necessary: Data should only be encoded in arrays if the size of the list is dynamic. If this is not the case, the use of explicit fields facilitates further processing.
RDF: This is the usual way to publish linked data, which can be done using RDF/XML, Turtle, N-Triples or JSON-LD formats.
· Use URIs to identify resources on the web: This form of HTTP addressing allows direct access to data. It also allows resources to be indexable by search engines.
· Use namespaces: Although not necessary for RDF processing, they generate a more human-readable representation of RDF and reduce file size.
· Use controlled vocabularies wherever possible: Reuse of vocabularies is a requirement to ensure data interoperability and should be used wherever possible.
APIs: are the most efficient data access mechanisms for consuming dynamic or high refresh rate data.
· Document the API: Among other relevant information, the content must unambiguously reflect how API requests are made, what parameters are required and what the expected output will be.
· Define understandable interpretations of status codes: the responses derived from requests made by API clients must be informative, human-understandable and machine-readable.
· Use HTTP headers: the additional information they contain is not part of the actual payload of the resource being requested and can encode information of interest to data consumers.
· Use paging to serve large amounts of data: this will reduce the load on the server and increase response times. The client will indicate in the request which portion to retrieve, as well as its size.
This infographic belongs to a series of informative resources on the Open Data Quality Guidelines. Keep learning with the infographic "General guidelines for ensuring open data quality".
[image: ]
image1.png




