Argitalpen data 29/12/2025
Ordenador con iconos
Azalpena

Cuando se acaban de cumplir tres años desde que comenzó la aceleración del despliegue masivo de la Inteligencia Artificial con el lanzamiento de ChatGPT, un término nuevo emerge con fuerza: la IA agéntica (Agentic AI). En los últimos tres años hemos pasado de hablar de modelos de lenguaje (como por ejemplo, los LLM) y chatbots (o asistentes conversacionales) a diseñar los primeros sistemas capaces no solo de responder a nuestras preguntas, sino de actuar de forma autónoma para conseguir objetivos, combinando datos, herramientas y colaboraciones con otros agentes de IA o con personas humanas. Esto es, la conversación global sobre IA se está moviendo desde la capacidad para "conversar" hacia la capacidad para "actuar" de estos sistemas.

En el sector privado, informes recientes de grandes consultoras describen agentes de IA que resuelven de principio a fin incidencias de clientes, orquestan cadenas de suministro, optimizan inventarios en el sector retail o automatizan la elaboración de informes de negocio. En el sector público, esta conversación también comienza a tomar forma y cada vez más administraciones exploran cómo estos sistemas pueden ayudar a simplificar trámites o a mejorar la atención a la ciudadanía. Sin embargo, el despliegue parece que está siendo algo más lento porque lógicamente en la administración no solo debe tenerse en cuenta la excelencia técnica sino también el estricto cumplimiento del marco normativo, que en Europa lo marca el Reglamento de IA, para que los agentes autónomos sean, ante todo, aliados de la ciudadanía.

¿Qué es la IA agéntica (Agentic AI)?

Aunque se trate de un concepto reciente que aún está en evolución, varias administraciones y organismos empiezan a converger en una definición. Por ejemplo, el Gobierno del Reino Unido describe la IA agéntica como sistemas formados por agentes de IA que “pueden comportarse e interactuar de forma autónoma para lograr sus objetivos”. En este contexto un agente de IA sería una pieza especializada de software que puede tomar decisiones y operar de forma cooperativa o independiente para lograr los objetivos del sistema.

Podríamos pensar, por ejemplo, en un agente de IA en una administración local que recibe la solicitud de una persona para abrir un pequeño negocio. El agente, diseñado de acuerdo con el procedimiento administrativo correspondiente, comprobaría la normativa aplicable, consultaría datos urbanísticos y de actividad económica, verificaría requisitos, rellenaría borradores de documentos, propondría citas o trámites complementarios y prepararía un resumen para que el personal funcionario pudiera revisar y validar la solicitud. Esto es, no sustituiría la decisión humana, sino que automatizaría buena parte del trabajo que hay entre la solicitud realizada por el ciudadano y la resolución dictada por la administración.

Frente a un chatbot conversacional -que responde a una pregunta y, en general, termina ahí la interacción-, un agente de IA puede encadenar múltiples acciones, revisar resultados, corregir errores, colaborar con otros agentes de IA y seguir iterando hasta alcanzar la meta que se le ha definido. Esto no significa que los agentes autónomos decidan por su cuenta sin supervisión, sino que pueden hacerse cargo de buena parte de la tarea siempre siguiendo reglas y salvaguardas bien definidas.

Las características clave de un agente autónomo incluyen:

  • Percepción y razonamiento: es la capacidad de un agente para comprender una solicitud compleja, interpretar el contexto y desglosar el problema en pasos lógicos que conduzcan a resolverlo.
  • Planificación y acción: es la habilidad para ordenar esos pasos, decidir la secuencia en que se van a ejecutar y adaptar el plan cuando cambian los datos o aparecen nuevas restricciones.
  • Uso de herramientas: un agente puede, por ejemplo, conectarse a diversas API, consultar bases de datos, catálogos de datos abiertos, abrir y leer documentos o enviar correos electrónicos según lo requieran las tareas que está intentando resolver.
  • Memoria y contexto: es la capacidad del agente para mantener la memoria de las interacciones en procesos largos, recordando las acciones y respuestas pasadas y el estado actual de la solicitud que está resolviendo.
  • Autonomía supervisada: un agente puede tomar decisiones dentro de unos límites previamente establecidos para avanzar hacia la meta sin necesidad de intervención humana en cada paso, pero permitiendo siempre la revisión y trazabilidad de las decisiones.

Podríamos resumir el cambio que supone con la siguiente analogía: si los LLM son el motor de razonamiento, los agentes de IA son sistemas que además de esa capacidad de “pensar” en las acciones que habría que hacer, tienen "manos" para interactuar con el mundo digital e incluso con el mundo físico y ejecutar esas mismas acciones.

El potencial de los agentes de IA en los servicios públicos

Los servicios públicos se organizan, en buena medida, alrededor de procesos de una cierta complejidad como son la tramitación de ayudas y subvenciones, la gestión de expedientes y licencias o la propia atención ciudadana a través de múltiples canales. Son procesos con muchos pasos, reglas y actores diferentes, donde abundan las tareas repetitivas y el trabajo manual de revisión de documentación.

Como puede verse en el eGovernment Benchmark de la Unión Europea, las iniciativas de administración electrónica de las últimas décadas han permitido avanzar hacia una mayor digitalización de los servicios públicos. Sin embargo, la nueva ola de tecnologías de IA, especialmente cuando se combinan modelos fundacionales con agentes, abre la puerta a un nuevo salto para automatizar y orquestar de forma inteligente buena parte de los procesos administrativos.

En este contexto, los agentes autónomos permitirían:

  • Orquestar procesos de extremo a extremo como, por ejemplo, recopilar datos de distintas fuentes, proponer formularios ya cumplimentados, detectar incoherencias en la documentación aportada o generar borradores de resoluciones para su validación por el personal responsable.
  • Actuar como “copilotos” de los empleados públicos, preparando borradores, resúmenes o propuestas de decisiones que luego se revisan y validan, asistiendo en la búsqueda de información relevante o señalando posibles riesgos o incidencias que requieren atención humana.
  • Optimizar los procesos de atención ciudadana apoyando en tareas como la gestión de citas médicas, respondiendo consultas sobre el estado de expedientes, facilitando el pago de tributos o guiando a las personas en la elección del trámite más adecuado a su situación.

Diversos análisis sobre IA en el sector público apuntan a que este tipo de automatización inteligente, al igual que en el sector privado, puede reducir tiempos de espera, mejorar la calidad de las decisiones y liberar tiempo del personal para tareas de mayor valor añadido. Un informe reciente de PWC y Microsoft que explora el potencial de la IA agéntica para el sector público resume bien la idea, señalando que al incorporar la IA agéntica en los servicios públicos, los gobiernos pueden mejorar la capacidad de respuesta y aumentar la satisfacción ciudadana, siempre que existan las salvaguardas adecuadas.

Además, la implementación de agentes autónomos permite soñar con una transición desde una administración reactiva (que espera a que el ciudadano solicite un servicio) a una administración proactiva que se ofrece a hacer por nosotros parte de esas mismas acciones: desde avisarnos de que se ha abierto una ayuda para la que probablemente cumplamos los requisitos, hasta proponernos la renovación de una licencia antes de que caduque o recordarnos una cita médica.

Un ejemplo ilustrativo de esto último podría ser un agente de IA que, apoyado en datos sobre servicios disponibles y en la información que el propio ciudadano haya autorizado utilizar, detecte que se ha publicado una nueva ayuda para actuaciones de mejora de la eficiencia energética a través de la rehabilitación de viviendas y envíe un aviso personalizado a quienes podrían cumplir los requisitos. Incluso ofreciéndoles un borrador de solicitud ya pre-cumplimentado para su revisión y aceptación. La decisión final sigue siendo humana, pero el esfuerzo de buscar la información, entender las condiciones y preparar la documentación se podría reducir mucho.

El rol de los datos abiertos

Para que un agente de IA pueda actuar de forma útil y responsable necesita apalancarse sobre un entorno rico en datos de calidad y un sistema de gobernanza de datos sólido. Entre esos activos necesarios para desarrollar una buena estrategia de agentes autónomos, los datos abiertos tienen importancia al menos en tres dimensiones:

  1. Combustible para la toma de decisiones: los agentes de IA necesitan información sobre normativa vigente, catálogos de servicios, procedimientos administrativos, indicadores socioeconómicos y demográficos, datos de transporte, medio ambiente, planificación urbana, etc. Para ello, la calidad y estructura de los datos es de gran importancia ya que datos desactualizados, incompletos o mal documentados pueden llevar a los agentes a cometer errores costosos. En el sector público, esos errores pueden traducirse en decisiones injustas que en última instancia podrían llevar a la pérdida de confianza de la ciudadanía.
  2. Banco de pruebas para evaluar y auditar agentes: al igual que los datos abiertos son importantes para evaluar modelos de IA generativa, también pueden serlo para probar y auditar agentes autónomos. Por ejemplo, simulando expedientes ficticios con datos sintéticos basados en distribuciones reales para comprobar cómo actúa un agente en distintos escenarios. De este modo, universidades, organizaciones de la sociedad civil y la propia administración puedan examinar el comportamiento de los agentes y detectar problemas antes de escalar su uso.
  3. Transparencia y explicabilidad: los datos abiertos podrían ayudar a documentar de dónde proceden los datos que utiliza un agente, cómo se han transformado o qué versiones de los conjuntos de datos estaban vigentes cuando se tomó una decisión. Esta trazabilidad contribuye a la explicabilidad y la rendición de cuentas, especialmente cuando un agente de IA interviene en decisiones que afectan a los derechos de las personas o a su acceso a servicios públicos. Si la ciudadanía puede consultar, por ejemplo, los criterios y datos que se aplican para otorgar una ayuda, se refuerza la confianza en el sistema.

El panorama de la IA agéntica en España y en el resto del mundo

Aunque el concepto de IA agéntica es reciente, ya existen iniciativas en marcha en el sector público a nivel internacional y comienzan a abrirse paso también en el contexto europeo y español:

  • La Government Technology Agency (GovTech) de Singapur ha publicado una guía Agentic AI Primer para orientar a desarrolladores y responsables públicos sobre cómo aplicar esta tecnología, destacando tanto sus ventajas como sus riesgos. Además, el gobierno está pilotando el uso de agentes en varios ámbitos para reducir la carga administrativa de los trabajadores sociales y apoyar a las empresas en procesos complejos de obtención de licencias. Todo ello en un entorno controlado (sandbox) para probar estas soluciones antes de escalarlas.
  • El Gobierno de Reino Unido ha publicado una nota específica dentro de su documentación “AI Insights” para explicar qué es la IA agéntica y por qué es relevante para servicios gubernamentales. Además, ha anunciado una licitación para desarrollar un “GOV.UK Agentic AI Companion” que sirva de asistente inteligente para la ciudadanía desde el portal del gobierno.
  • La Comisión Europea, en el marco de la estrategia Apply AI y de la iniciativa GenAI4EU, ha lanzado convocatorias para financiar proyectos piloto que introduzcan soluciones de IA generativa escalables y replicables en las administraciones públicas, plenamente integradas en sus flujos de trabajo. Estas convocatorias buscan precisamente acelerar el paso en la digitalización a través de IA (incluidos agentes especializados) para mejorar la toma de decisiones, simplificar procedimientos y hacer la administración más accesible.

En España, aunque la etiqueta “IA agéntica” todavía no se utiliza aún de forma amplia, ya se pueden identificar algunas experiencias que van en esa dirección. Por ejemplo, distintas administraciones están incorporando copilotos basados en IA generativa para apoyar a los empleados públicos en tareas de búsqueda de información, redacción y resumen de documentos, o gestión de expedientes, como muestran iniciativas de gobiernos autonómicos como el de Aragón y o entidades locales como el Ayuntamiento de Barcelona que empiezan a documentarse de forma pública.

El salto hacia agentes más autónomos en el sector público parece, por tanto, una evolución natural sobre la base de la administración electrónica existente. Pero esa evolución debe, al mismo tiempo, reforzar el compromiso con la transparencia, la equidad, la rendición de cuentas, la supervisión humana y el cumplimiento normativo que exige el Reglamento de IA y el resto del marco normativo y que deben guiar las actuaciones de la administración pública.

Mirando hacia el futuro: agentes de IA, datos abiertos y confianza ciudadana

La llegada de la IA agéntica ofrece de nuevo a la Administración pública nuevas herramientas para reducir la burocracia, personalizar la atención y optimizar sus siempre escasos recursos. Sin embargo, la tecnología es solo un medio, el fin último sigue siendo generar valor público reforzando la confianza de la ciudadanía.

En principio, España parte de una buena posición: dispone de una Estrategia de Inteligencia Artificial 2024 que apuesta por una IA transparente, ética y centrada en las personas, con líneas específicas para impulsar su uso en el sector público; cuenta con una infraestructura consolidada de datos abiertos; y ha creado la Agencia Española de Supervisión de la Inteligencia Artificial (AESIA) como organismo encargado de garantizar un uso ético y seguro de la IA, de acuerdo con el Reglamento Europeo de IA.

Estamos, por tanto, ante una nueva oportunidad de modernización que puede construir unos servicios públicos más eficientes, cercanos e incluso proactivos. Si somos capaces de adoptar la IA agéntica adecuadamente, los agentes que se desplieguen no serán una “caja negra” que actúa sin supervisión, sino “agentes públicos” digitales, transparentes y auditables, diseñados para trabajar con datos abiertos, explicar sus decisiones y dejar rastro de las acciones que realizan. Herramientas, en definitiva, inclusivas, centradas en las personas y alineadas con los valores del servicio público.

Contenido elaborado por Jose Luis Marín, Senior Consultant in Data, Strategy, Innovation & Digitalization. Los contenidos y los puntos de vista reflejados en esta publicación son responsabilidad exclusiva de su autor.