Pódcast: inteligencia artificial y datos (nuevos retos y contexto jurídico)

Fecha: 28-01-2025

Nombre: Ricard Martínez, profesor de derecho constitucional, y Carmen Torrijos, lingüista computacional.

Sector: Ciencia y tecnología

INTELIGENCIA ARTIFICIAL Y DATOS: NUEVOS RETOS Y CONTEXTO JURÍDICO. Un pódcast con Ricard Martínez (profesor de derecho constitucional) y Carmen Torrijos (lingüista computacional).

En este episodio vamos a hablar de la inteligencia artificial y sus retos, tomando como base el Reglamento Europeo de Inteligencia Artificial que entró en vigor este año. Quédate para conocer los retos oportunidades y novedades del sector de la mano de dos expertos en la materia:

  • Ricard Martínez, profesor de derecho constitucional de la Universitat de València en la que dirige la Cátedra de Privacidad y Transformación Digital Microsoft Universidad de Valencia.
  • Carmen Torrijos, lingüista computacional, experta en IA aplicada al lenguaje y profesora de minería de texto en la Universidad Carlos III.

Escuchar el pódcast completo

Resumen de la entrevista

1. Está claro que la inteligencia artificial está en continua evolución. Para entrar en materia, me gustaría que nos contarais ¿cuáles son los últimos avances en la IA?

Carmen Torrijos: Surgen muchas aplicaciones nuevas. Por ejemplo, este fin de semana pasado ha tenido mucho eco una IA de generación de imagen en X, en Twitter, no sé si lo habéis seguido, que se llama Grok. Ha tenido bastante impacto, no porque aporte nada nuevo, ya que la generación de imagen es algo que estamos haciendo desde diciembre de 2023. Pero esta es una IA que tiene menos censura, es decir, teníamos hasta ahora muchas dificultades con los sistemas generalistas para hacer imágenes que tuvieran caras de famosos o tuvieran situaciones determinadas y estaba muy vigilado desde cualquier herramienta. Grok lo que hace es levantar todo eso y que cualquiera pueda hacer cualquier tipo de imagen con cualquier persona famosa o con cualquier cara conocida. Es una moda seguramente muy pasajera. Haremos imágenes durante un tiempo y luego se nos pasará.

Y después tenemos también sistemas de creación de podcast automáticos, como Notebook LM. Ya llevamos un par de meses viéndolos y ha sido realmente una de las cosas que a mí, en los últimos meses, me ha sorprendido de verdad. Porque ya parece que todos son innovaciones incrementales: sobre lo que ya tenemos, nos dan algo mejor. Pero esto es algo realmente nuevo que sorprende. Tú subes un PDF y te puede generar un podcast de dos personas hablando de manera totalmente natural, totalmente realista, sobre ese PDF. Es algo que puede hacer Notebook LM que es de Google.

2. El Reglamento Europeo de Inteligencia Artificial es la primera norma jurídica del mundo sobre IA, ¿con qué objetivos se publica este documento que es ya un marco referencial a nivel internacional?

Ricard Martínez:  El Reglamento surge por algo que está implícito en lo que Carmen nos ha contado. Todo esto que Carmen cuenta es porque nos hemos abierto a la misma carrera desenfrenada a la que nos abrimos con la aparición de las redes sociales. Porque cuando esto pasa, no es inocente, no es que las compañías sean generosas, es que las compañías están compitiendo por nuestros datos. Nos gamifican, nos animan a jugar, nos animan a proporcionarles información, por eso se abren. No se abren porque sean generosas, no se abren porque quieran trabajar para el bien común o para la humanidad. Se abren porque les estamos haciendo el trabajo. ¿Qué es lo que la Unión Europea quiere frenar? Lo que aprendimos con las redes sociales. La Unión Europea plantea dos grandes enfoques que voy a tratar de explicar de modo muy sucinto. El primer enfoque es un enfoque de riesgo sistémico. La Unión Europea ha dicho: “no voy a tolerar herramientas de inteligencia artificial que puedan poner en peligro el sistema democrático, es decir, el estado de derecho y mi modo de funcionamiento o que puedan vulnerar gravemente derechos fundamentales”. Eso es una línea roja.

El segundo enfoque es un enfoque de orientación a producto. Una IA es un producto. Cuando usted fabrica un coche, sigue unas reglas que gestionan cómo produce ese coche, y ese coche llega al mercado cuando es seguro, cuando tiene todas las especificaciones. Ese es el segundo gran enfoque del Reglamento. El Reglamento dice que puede usted estar desarrollando una tecnología porque usted está investigando y casi le dejo hacer lo que quiera. Ahora, si esta tecnología va a llegar al mercado, usted catalogará el riesgo. Si el riesgo es bajo o leve, usted va a poder hacer muchas cosas y, prácticamente, con transparencia y códigos de conducta, se lo voy a dar por bueno. Pero si es un riesgo alto, usted va a tener que seguir un proceso de diseño estandarizado, y va a necesitar que un órgano notificado verifique esa tecnología, se asegure que en su documentación usted ha cumplido lo que tiene que cumplir, y entonces le darán un sello CE. Y no acabamos aquí, porque va a haber vigilancia postcomercial. De modo que, a lo largo del ciclo de vida del producto, usted debe garantizar que esto funciona bien y que se ajusta a la norma.

Por otra parte, se establece un control férreo respecto de los grandes modelos de datos, no solo LLM, también puede ser de imagen o de otro tipo de información, cuando crea que pueden plantear riesgos sistémicos.

En ese caso, hay un control muy directo por parte de la Comisión. Por tanto, en el fondo, lo que están diciendo es: "respeten los derechos, garanticen la democracia, produzcan la tecnología de modo ordenado de acuerdo con ciertas especificaciones".

Carmen Torrijos:  Sí, en cuanto a los objetivos está claro. Me he quedado con lo último que decía Ricard sobre producir tecnología de acuerdo a esta Regulación. Tenemos este mantra de que Estados Unidos hace cosas, Europa las regula y China las copia. A mí no me gusta nada generalizar así. Pero es verdad que Europa es pionera en materia de legislación y seríamos mucho más fuertes si pudiéramos producir tecnología acorde a los estándares regulatorios que estamos poniendo. Hoy por hoy todavía no podemos, quizás es una cuestión de darnos tiempo, pero creo que esa es la clave de la soberanía tecnológica en Europa.

3. Para poder producir esa tecnología, los sistemas de IA necesitan datos para entrenar sus modelos. ¿Qué criterios deberían cumplir los datos para poder entrenar correctamente un sistema de IA? ¿Los conjuntos de datos abiertos podrían ser una fuente? ¿De qué manera?

Carmen Torrijos: Los datos con los que alimentamos la IA son el punto de mayor conflicto. ¿Podemos entrenar con cualquier conjunto de datos incluso aunque estén disponibles? No vamos a hablar de datos abiertos, sino de datos disponibles.

Datos abiertos es, por ejemplo, la base de todos los modelos de lenguaje, y todo el mundo esto lo sabe, que es Wikipedia. Wikipedia es un ejemplo ideal para entrenar, porque es abierta, está optimizado para su uso computacional, es descargable, es muy fácil de usar, hay muchísimo lenguaje, por ejemplo, para entrenar modelos de lenguaje, y hay muchísimo conocimiento del mundo. Con lo cual es el conjunto de datos ideal para entrenar un modelo de IA. Y Wikipedia está en abierto, está disponible, es de todos y es para todos, se puede utilizar.

Ahora bien, ¿todos los conjuntos de datos que hay disponibles en Internet se pueden utilizar para entrenar sistemas de IA? Esa es un poco la duda. Porque el hecho de que algo esté publicado en Internet no quiere decir que sea público, de uso público, aunque tú puedas cogerlo y entrenar un sistema y empezar a generar lucro a partir de ese sistema. Tenía unos derechos de autor, una autoría y propiedad intelectual. Ese yo creo que es el conflicto más grave que tenemos ahora mismo en IA generativa porque utiliza contenidos para inspirarse y crear. Y ahí poco a poco Europa está dando pasitos. Por ejemplo, el Ministerio de Cultura ha lanzado una iniciativa para empezar a ver cómo podemos crear contenidos, conjuntos de datos licenciados, que permitan entrenar la IA de una manera legal, ética y con respecto a los derechos de propiedad intelectual de los autores.

Todo esto está generando muchísima fricción. Porque si seguimos así, nos ponemos en contra a muchos ilustradores, traductores, escritores, etc. (todos los creadores que trabajan con el contenido), porque no van a querer que se desarrolle esta tecnología a costa de sus contenidos. De alguna manera hay que encontrar el equilibrio en la regulación y en la innovación para que las dos cosas ocurran. Desde los grandes sistemas tecnológicos que se están desarrollando, sobre todo en Estados Unidos, se repite una idea que es que solo con contenidos licenciados, con conjuntos de datos legales que están libres de propiedad intelectual, o que se ha pagado los rendimientos necesarios por su propiedad intelectual, no se puede llegar al nivel de calidad de las IA's que tenemos ahora. Es decir, solamente con conjuntos de datos legales no hubiéramos tenido ChatGPT al nivel que está el ChatGPT.

Eso no está escrito en piedra y no tiene por qué ser así. Tenemos que seguir investigando, o sea, tenemos que seguir viendo cómo podemos lograr una tecnología de ese nivel, pero que cumpla con la regulación. Porque lo que han hecho en Estados Unidos, lo que ha hecho GPT-4, los grandes modelos del lenguaje, los grandes modelos de generación de imagen, es enseñarnos el camino. Esto es hasta dónde podemos llegar. Pero lo habéis hecho cogiendo contenido que no es vuestro, que no era lícito coger. Tenemos que conseguir volver a ese nivel de calidad, volver a ese nivel de rendimiento de los modelos, respetando la propiedad intelectual del contenido. Y eso es un papel que yo creo que corresponde principalmente a Europa

4. Otra de las cuestiones que le preocupa a la ciudadanía respecto al rápido desarrollo de la IA es el tratamiento de los datos personales. ¿Cómo deberían protegerse y qué condiciones establece el reglamento europeo para ello?

Ricard Martínez: Hay un conjunto de conductas que se han prohibido esencialmente para garantizar los derechos fundamentales de las personas. Pero no es la única medida. Yo le concedo muchísima importancia a un artículo en la norma al que seguramente no le vamos a dar muchas vueltas, pero para mí es clave. Hay un artículo, el cuarto, que en inglés se ha titulado AI Literacy, y en castellano “Formación en inteligencia artificial” que dice que cualquier sujeto que está interviniendo en la cadena de valor tiene que haber sido adecuadamente formado. Tiene que conocer de qué va esto, tiene que conocer cuál es el estado del arte, tiene que conocer cuáles son las implicaciones de la tecnología que va a desarrollar o que va a desplegar. Le concedo mucho valor porque significa incorporar en toda la cadena de valor (desarrollador, comercializador, importador, compañía que despliegue un modelo para su uso, etc.) un conjunto de valores que suponen lo que en inglés se llama accountability, responsabilidad proactiva, por defecto. Esto se puede traducir en un elemento que es muy sencillo, sobre el que se habla hace dos mil años en el mundo del derecho, que es el ‘no hacer daño’, es el principio de no maleficencia.

Con algo tan sencillo como eso, "no haga usted daño a los demás, actúe de buena y garantice sus derechos",  no se deberían producir efectos perversos o efectos dañosos, lo cual no significa que no pueda suceder. Y precisamente eso lo dice el Reglamento muy particularmente cuando se refiere a los sistemas de riesgo alto, pero es aplicable a todos los sistemas. El Reglamento te dice que tienes que garantizar los procesos de cumplimiento y las garantías durante todo el ciclo de vida del sistema. De ahí que sea tan importante la robustez, la resiliencia y el disponer de planes de contingencia que te permiten revertir, paralizar, pasar a control humano, cambiar el modelo de uso cuando se produce algún incidente.

Por tanto, todo el ecosistema está dirigido a ese objetivo de no lesionar derechos, no causar perjuicios. Y hay un elemento que ya no depende de nosotros, depende de las políticas públicas. La IA no solo va a lesionar derechos, va a cambiar el modo en el que entendemos el mundo. Si no hay políticas públicas en el sector educativo que aseguren que nuestros niños y niñas desarrollen capacidades de pensamiento computacional y de ser capaces de tener una relación con una interfaz-máquina, su acceso al mercado de trabajo se va a ver significativamente afectado. Del mismo modo, si no aseguramos la formación continua de los trabajadores en activo y también las políticas públicas de aquellos sectores condenados a desaparecer.

Carmen Torrijos: Me parece muy interesante el enfoque de Ricard de formar es proteger. Formar a la gente, informar a la gente, que la gente tenga capacitación en IA, no solamente la gente que está en la cadena de valor, sino todo el mundo. Cuanto más formas y capacitas, más estás protegiendo a las personas.

Cuando salió la ley, hubo cierta decepción en los entornos IA y sobre todo en los entornos creativos. Porque estábamos en plena efervescencia de la IA generativa y no se estaba regulando apenas la IA generativa, pero se estaban regulando otras cosas que dábamos por hecho que en Europa no iban a pasar, pero que hay que regular para que no puedan pasar. Por ejemplo, la vigilancia biométrica: que Amazon no pueda leerte la cara para decidir si estás más triste ese día y venderte más cosas o sacarte más publicidad o una publicidad determinada. Digo Amazon, pero puede ser cualquier plataforma. Eso, por ejemplo, en Europa no se va a poder hacer porque está prohibido desde la ley, es un uso inaceptable: la vigilancia biométrica.

Otro ejemplo es la puntuación social, el social scoring que vemos que pasa en China, que se dan puntos a los ciudadanos y se accede a servicios públicos a partir de estos puntos. Eso tampoco se va a poder hacer. Y hay que contemplar también esta parte de la ley, porque damos muy por hecho que esto no nos va a ocurrir, pero cuando no lo regulas es cuando ocurre. China tiene instalados 600 millones de cámaras de TRF, de tecnología de reconocimiento facial, que te reconocen con tu DNI. Eso no va a pasar en Europa porque no se puede, porque también es vigilancia biométrica. Entonces hay que entender que la ley quizá parece que va más despacio en lo que ahora nos tiene embelesados que es la IA generativa, pero se ha dedicado a tratar puntos muy importantes que había que cubrir para proteger a las personas. Para no perder derechos fundamentales que ya teníamos ganados.

Por último, la ética tiene un componente muy incómodo, que nadie quiere mirar, que es que a veces hay que revocar. A veces hay que quitar algo que está en funcionamiento, incluso que está dando un beneficio, porque está incurriendo en algún tipo de discriminación, o porque está trayendo algún tipo de consecuencia negativa que viola a los derechos de un colectivo, de una minoría o de alguien vulnerable. Y eso es muy complicado. Cuando ya nos hemos acostumbrado a tener una IA funcionando en determinado contexto, que puede ser incluso un contexto público, parar y decir que esto está discriminando a personas, entonces este sistema no puede seguir en producción y hay que quitarlo. Ese punto es muy complicado, es muy incómodo y cuando hablamos de ética, que hablamos muy fácil de ética, hay que pensar también en cuántos sistemas vamos a tener que parar y revisar antes de poder volver a poner en funcionamiento, por muy fácil que nos hagan la vida o por muy innovadores que parezcan.

5. En este sentido, teniendo en cuenta todo lo que recoge el Reglamento, algunas empresas españolas, por ejemplo, tendrán que adaptarse a este nuevo marco. ¿Qué deberían estar haciendo ya las organizaciones para prepararse? ¿Qué deberían revisar las empresas españolas teniendo en cuenta el reglamento europeo?

Ricard Martínez: Esto es muy importante, porque hay un nivel corporativo empresarial de altas capacidades que a mí no me preocupa porque estas empresas entienden que estamos hablando de una inversión. Y del mismo modo que invirtieron en un modelo basado en procesos que integraba el compliance desde el diseño para protección de datos. El siguiente salto, que es hacer exactamente lo mismo con inteligencia artificial, no diré que carece de importancia, porque posee una importancia relevante, pero digamos que es recorrer un camino que ya se ensayó. Estas empresas ya tienen unidades de compliance, ya tienen asesores, y ya tienen unas rutinas en las que se puede integrar como una parte más del proceso el marco de referencia de la normativa de inteligencia artificial. Al final lo que va a hacer es crecer en un sentido el análisis de riesgos. Seguramente va a obligar a modular los procesos de diseño y también las propias fases de diseño, es decir, mientras que en un diseño de software prácticamente hablamos de pasar de un modelo no funcional a picar código, aquí hay una serie de labores de enriquecimiento, anotación, validación de los conjuntos de datos, prototipado que exigen seguramente más esfuerzo, pero son rutinas que se pueden estandarizar.

Mi experiencia en proyectos europeos en los que hemos trabajado con clientes, es decir, con las PYMES, que esperan que la IA sea plug and play, lo que hemos apreciado es una enorme falta de capacitación. Lo primero que deberías preguntarte no es si tu empresa necesita IA, sino si tu empresa está preparada para la IA. Es una pregunta previa y bastante más relevante. Oiga, usted cree que puede dar un salto a la IA, que puede contratar un determinado tipo de servicios, y nos estamos dando cuenta que es que usted ni siquiera cumple bien la norma de protección de datos.

Hay una cosa, una entidad que se llama Agencia Española de Inteligencia Artificial, AESIA y hay un Ministerio de Transformación Digital, y si no hay políticas públicas de acompañamiento, podemos incurrir en situaciones de riesgo. ¿Por qué? Porque yo tengo el enorme placer de formar en grados y posgrados a futuros emprendedores en inteligencia artificial. Cuando se enfrentan al marco ético y jurídico no diré que se quieren morir, pero se les cae el mundo encima. Porque no hay un soporte, no hay un acompañamiento, no hay recursos, o no los pueden ver, que no le supongan una ronda de inversión que no pueden soportar, o no hay modelos guiados que les ayuden de modo, no diré fácil, pero sí al menos usable.

Por lo tanto, creo que hay un reto sustancial en las políticas públicas, porque si no se da esa combinación, las únicas empresas que podrán competir son las que ya tienen una masa crítica, una capacidad inversora y un capital acumulado que les permite cumplir con la norma. Esta situación podría conducir a un resultado contraproducente.

Queremos recuperar la soberanía digital europea, pero si no hay políticas públicas de inversión, los únicos que van a poder cumplir la norma europea son las empresas de otros países.

Carmen Torrijos: No porque sean de otros países sino porque son más grandes.

Ricard Martínez: Sí, por no citar países.

6. Hemos hablado de retos, pero también es importante destacar oportunidades. ¿Qué aspectos positivos podríais destacar a raíz de esta regulación reciente?

Ricard Martínez: Yo trabajo en la construcción, con fondos europeos, de Cancer Image EU que pretende ser una infraestructura digital para la imagen de cáncer. En estos momentos, hablamos de un partenariado que engloba a 14 países, 76 organizaciones, camino de 93, para generar una base de datos de imagen médica con 25 millones de imágenes  de cáncer con información clínica asociada para el desarrollo de inteligencia artificial. La infraestructura se está construyendo, todavía no existe, y aún así, en el Hospital La Fe, en Valencia, ya se está investigando con mamografías de mujeres que se han practicado el screening bienal y que después han desplegado cáncer, para ver si es capaz de entrenar un modelo de análisis de imagen que sea capaz de reconocer preventivamente esa manchita que el oncólogo o el radiólogo no vieron y que después acabó siendo un cáncer. ¿Significa que te van a poner quimioterapia cinco minutos después? No. Significa que te van a monitorizar, que van a tener una capacidad de reacción temprana. Y que el sistema de salud se va a ahorrar doscientos mil euros. Por mencionar alguna oportunidad.

Por otra parte, las oportunidades hay que buscarlas, además, en otras normas. No solo en el Reglamento de Inteligencia Artificial. Hay que irse a Data Governance Act, que quiere contrarrestar el monopolio de datos que tienen las empresas norteamericanas con una compartición de datos desde el sector público, privado y desde la propia ciudadanía. Con Data Act, que pretende empoderar a los ciudadanos para que puedan recuperar sus datos y compartirlos mediante consentimiento. Y finalmente con el European Health Data Space que quiere crear un ecosistema de datos de salud para promover la innovación, la investigación y el emprendimiento. Ese ecosistema de espacios de datos es el que debería ser un enorme generador de espacios de oportunidad.

Y además, yo no sé si lo van a conseguir o no, pero pretende ser coherente con nuestro ecosistema empresarial. Es decir, un ecosistema de pequeña y mediana empresa que no tiene altas capacidades en la generación de datos y lo que le vamos a hacer es a construirles el campo. Les vamos a crear los espacios de datos, les vamos a crear los intermediarios, los servicios de intermediación y esperemos que ese ecosistema en su conjunto permita que el talento europeo emerja desde la pequeña y media empresa. ¿Que se vaya a conseguir o no? No lo sé, pero el escenario de oportunidad parece muy interesante.

Carmen Torrijos: Si preguntas por oportunidades, oportunidades todas. No solamente la inteligencia artificial, sino todo el avance tecnológico, es un campo tan grande que puede traer oportunidades de todo tipo. Lo que hay que hacer es bajar las barreras, que ese es el problema que tenemos. Y barreras las tenemos también de muchos tipos, porque tenemos barreras técnicas, de talento, salariales, disciplinares, de género, generacionales, etc.

Tenemos que concentrar las energías en bajar esas barreras, y luego también creo que seguimos viniendo del mundo analógico y tenemos poca conciencia global de que tanto lo digital como todo lo que afecta a la IA y a los datos es un fenómeno global. No sirve de nada mantenerlo todo en lo local, o en lo nacional, o ni siquiera a nivel europeo, sino que es un fenómeno global. Los grandes problemas que tenemos vienen porque tenemos empresas tecnológicas que se desarrollan en Estados Unidos trabajando en Europa con datos de ciudadanos europeos. Ahí se genera muchísima fricción. Todo lo que pueda llevar a algo más global va a ir siempre en favor de la innovación y va a ir siempre en favor de la tecnología. Lo primero es levantar las barreras dentro de Europa. Esa es una parte muy positiva de la ley.

7. Llegados a este punto, nos gustaría realizar un repaso sobre el estado en el que nos encontramos y las perspectivas de futuro. ¿Cómo veis el futuro de la inteligencia artificial en Europa?

Ricard Martínez: Yo tengo dos visiones: una positiva y una negativa. Y las dos vienen de mi experiencia en protección de datos. Si ahora que tenemos un marco normativo, las autoridades reguladoras, me refiero desde inteligencia artificial y desde protección de datos, no son capaces de encontrar soluciones funcionales y aterrizadas, y generan políticas públicas desde arriba hacia abajo y desde una excelencia que no se corresponde con las capacidades y las posibilidades de la investigación -me refiero no solo a la investigación empresarial, también a la universitaria-, veo el futuro muy negro. Si por el contrario, entendemos de modo dinámico la regulación con políticas públicas de soporte y acompañamiento que generen las capacidades para esa excelencia, veo un futuro prometedor porque en principio lo que haremos será competir en el mercado con las mismas soluciones que los demás, pero responsive: seguras, responsables y confiables.

Carmen: Sí, yo estoy muy de acuerdo. Yo introduzco en eso la variable tiempo, ¿no? Porque creo que hay que tener mucho cuidado en no generar más desigualdad de la que ya tenemos. Más desigualdad entre empresas, más desigualdad entre la ciudadanía. Si tenemos cuidado con eso, que se dice fácil, pero se hace difícil, yo creo que el futuro puede ser brillante, pero no lo va a ser de manera inmediata. Es decir, vamos a tener que pasar por una época más oscura de adaptación al cambio. Igual que muchos temas de la digitalización ya no nos son ajenos, ya están trabajados, ya hemos pasado por ellos y ya los hemos regulado, la inteligencia artificial necesita su tiempo también.

Llevamos muy pocos años de IA, muy pocos años de IA generativa. De hecho, dos años no es nada en un cambio tecnológico a nivel mundial. Y tenemos que dar tiempo a las leyes y tenemos también que dar tiempo a que ocurran cosas. Por ejemplo, pongo un ejemplo muy evidente, la denuncia del New York Times a Microsoft y a OpenAI no se ha resuelto todavía. Llevamos un año, se interpuso en diciembre de 2023, el New York Times se queja de que han entrenado con sus contenidos los sistemas de IA y en un año no se ha conseguido llegar a nada en ese proceso. Los procesos judiciales son muy lentos. Necesitamos que ocurran más cosas. Y que se resuelvan más procesos de este tipo para tener precedentes y para tener madurez como sociedad en lo que está ocurriendo, y nos falta mucho. Es como que no ha pasado casi nada. Entonces, la variable tiempo creo que es importante y creo que, aunque al principio tengamos un futuro más negro, como dice Ricard, creo que a largo plazo, si mantenemos claros los límites, podemos llegar a algo brillante.

Clips de la entrevista

Clip 1. ¿Qué criterios deberían tener los datos para entrenar un sistema de IA?

Clip 2. ¿Qué deberían revisar las empresas españolas teniendo en cuenta el Reglamento de IA?