Documentación

1. Introducción

Las visualizaciones son representaciones gráficas de datos que permiten comunicar, de manera sencilla y efectiva, la información ligada a los mismos. Las posibilidades de visualización son muy amplias, desde representaciones básicas como los gráficos de líneas, de barras o métricas relevantes, hasta visualizaciones configuradas sobre cuadros de mando interactivos.

En esta sección de “Visualizaciones paso a paso” estamos presentando periódicamente ejercicios prácticos haciendo uso de datos abiertos disponibles en  datos.gob.es u otros catálogos similares. En ellos se abordan y describen de manera sencilla las etapas necesarias para obtener los datos, realizar las transformaciones y los análisis pertinentes para, finalmente obtener unas conclusiones a modo de resumen de dicha información.

En cada ejercicio práctico se utilizan desarrollos de código documentados y herramientas de uso gratuito. Todo el material generado está disponible para su reutilización en el repositorio de GitHub de datos.gob.es.

En este ejercicio concreto, exploraremos la actual situación de la penetración de los vehículos eléctricos en España y las perspectivas de futuro de esta tecnología disruptiva en el transporte.

Accede al repositorio del laboratorio de datos en Github.

Ejecuta el código de pre-procesamiento de datos sobre Google Colab.

En este vídeo, el autor te explica que vas a encontrar tanto en el Github como en Google Colab.

2. Contexto: ¿Por qué es importante el vehículo eléctrico?

La transición hacia una movilidad más sostenible se ha convertido en una prioridad global, situando al vehículo eléctrico (VE) en el centro de numerosas discusiones sobre el futuro del transporte. En España, esta tendencia hacia la electrificación del parque automovilístico no solo responde a un creciente interés por parte de los consumidores en tecnologías más limpias y eficientes, sino también a un marco regulatorio y de incentivos diseñado para acelerar la adopción de estos vehículos. Con una creciente oferta de modelos eléctricos disponibles en el mercado, los vehículos eléctricos representan una pieza clave en la estrategia del país para reducir las emisiones de gases de efecto invernadero, mejorar la calidad del aire en las ciudades y fomentar la innovación tecnológica en el sector automotriz.

Sin embargo, la penetración de los vehículos eléctricos en el mercado español enfrenta una serie de desafíos, desde la infraestructura de carga hasta la percepción y el conocimiento del consumidor sobre estos vehículos. La expansión de la red de carga, junto con las políticas de apoyo y los incentivos fiscales, son fundamentales para superar las barreras existentes y estimular la demanda. A medida que España avanza hacia sus objetivos de sostenibilidad y transición energética, el análisis de la evolución del mercado de vehículos eléctricos se convierte en una herramienta esencial para entender el progreso realizado y los obstáculos que aún deben superarse.

3. Objetivo

Este ejercicio se centra en mostrar al lector técnicas para el tratamiento, visualización y análisis avanzado de datos abiertos mediante Python. Adoptaremos para ello el enfoque “aprender haciendo”, de tal forma que el lector pueda comprender la utilización de estas herramientas en el contexto de la resolución de un reto real y de actualidad como es el estudio de la penetración del VE en España. Este enfoque práctico no solo mejora la comprensión de las herramientas de ciencia de datos, sino que también prepara a los lectores para aplicar estos conocimientos en la resolución de problemas reales, ofreciendo una experiencia de aprendizaje rica y directamente aplicable a sus propios proyectos.

Las preguntas a las que trataremos de dar respuesta a través de nuestro análisis son:

  1. ¿Qué marcas de vehículos lideraron el mercado en 2023?
  2. ¿Qué modelos de vehículos fueron los más vendidos en el 2023?
  3. ¿Qué cuota de mercado absorbieron los vehículos eléctricos en el 2023?
  4. ¿Qué modelos de vehículos eléctricos fueron los más vendidos en el 2023?
  5. ¿Cómo han evolucionado las matriculaciones de vehículos a lo largo del tiempo?
  6. ¿Observamos algún tipo de tendencia respecto a la matriculación de vehículos eléctricos?
  7. ¿Cómo esperamos que evolucionen las matriculaciones de vehículos eléctricos el próximo año?
  8. ¿Cuál es la reducción de emisiones de CO2 que podemos esperar gracias a las matriculaciones obtenidas durante el próximo año?

4. Recursos

Para completar el desarrollo de este ejercicio requeriremos el uso de dos categorías de recursos: Herramientas Analíticas y Conjuntos de Datos.

4.1. Conjunto de datos

Para completar este ejercicio utilizaremos un conjunto de datos provisto por la Dirección General de Tráfico (DGT) a través de su portal estadístico, también disponible desde el catálogo Nacional de Datos Abiertos (datos.gob.es). El portal estadístico de la DGT es una plataforma en línea destinada a ofrecer acceso público a una amplia gama de datos y estadísticas relacionadas con el tráfico y la seguridad vial. Este portal incluye información sobre accidentes de tráfico, infracciones, matriculaciones de vehículos, permisos de conducción y otros datos relevantes que pueden ser útiles para investigadores, profesionales del sector y el público en general.

En nuestro caso, utilizaremos su conjunto de datos de matriculaciones de vehículos en España disponibles vía:

Aunque durante el desarrollo del ejercicio mostraremos al lector los mecanismos necesarios para su descarga y procesamiento, incluimos en el repositorio de GitHub asociado los datos preprocesados*, de tal forma que el lector pueda proceder directamente al análisis de los mismos en el caso de que lo desee.

*Los datos utilizados en este ejercicio fueron descargados el 04 de marzo de 2024. La licencia aplicable a este conjunto de datos puede encontrarse en https://datos.gob.es/avisolegal.

4.2. Herramientas analíticas

  • Lenguaje de programación: Python – es un lenguaje de programación ampliamente utilizado en análisis de datos debido a su versatilidad y a la amplia gama de bibliotecas disponibles. Estas herramientas permiten a los usuarios limpiar, analizar y visualizar grandes conjuntos de datos de manera eficiente, lo que hace de Python una elección popular entre los científicos de datos y analistas.
  • Plataforma: Jupyter Notebooks – es una aplicación web que permite crear y compartir documentos que contienen código vivo, ecuaciones, visualizaciones y texto narrativo. Se utiliza ampliamente para la ciencia de datos, análisis de datos, aprendizaje automático y educación interactiva en programación.
  • Principales librerías y módulos:
    • Manipulación de datos: Pandas – es una librería de código abierto que proporciona estructuras de datos de alto rendimiento y fáciles de usar, así como herramientas de análisis de datos.
    • Visualización de datos:
      • Matplotlib: es una librería para crear visualizaciones estáticas, animadas e interactivas en Python.
      • Seaborn: es una librería basada en Matplotlib. Proporciona una interfaz de alto nivel para dibujar gráficos estadísticos atractivos e informativos.
    • Estadística y algoritmia:
      • Statsmodels: es una librería que proporciona clases y funciones para la estimación de muchos modelos estadísticos diferentes, así como para realizar pruebas y exploración de datos estadísticos.
      • Pmdarima: es una librería especializada en la modelización automática de series temporales, facilitando la identificación, el ajuste y la validación de modelos para pronósticos complejos.

5. Desarrollo del ejercicio

Es aconsejable ir ejecutando el Notebook con el código a la vez que se realiza la lectura del post, ya que ambos recursos didácticos son complementarios en las futuras explicaciones

 

El ejercicio propuesto se divide en cuatro fases principales.

5.1 Configuración inicial

Este apartado podrás encontrarlo en el punto 1 del Notebook.

En este breve primer apartado, configuraremos nuestro Jupyter Notebook y nuestro entorno de trabajo para poder trabajar con el conjunto de datos seleccionado. Importaremos las librerías Python necesarias y crearemos algunos directorios donde almacenaremos los datos descargados.

5.2 Preparación de datos

Este apartado podrás encontrarlo en el punto 2 del Notebook.

Todo análisis de datos requiere una fase de acceso y tratamiento de los mismos hasta obtener los datos adecuados en el formato deseado. En esta fase, descargaremos los datos del portal estadístico y los transformaremos al formato Apache Parquet antes de proceder a su análisis.

Aquellos usuarios que quieran profundizar en esta tarea, tienen a su disposición la Guía Práctica de Introducción al Análisis Exploratorio de Datos.

5.3 Análisis de datos

Este apartado podrás encontrarlo en el punto 3 del Notebook.

5.3.1 Análisis descriptivo

En esta tercera fase, comenzaremos nuestro análisis de datos. Para ello, responderemos las primeras preguntas apoyándonos en herramientas de visualización de datos que además nos permitirán familiarizarnos con los mismos. Mostramos a continuación algunos ejemplos del análisis:

  • Top 10 Vehículos matriculados en el 2023: En esta visualización representamos los diez modelos de vehículos con mayor número de matriculaciones durante el año 2023, indicando además el tipo de combustión de estos. Las principales conclusiones son:
    • Los únicos vehículos de fabricación europea que aparecen en el Top 10 son el Arona y el Ibiza de la marca española SEAT. El resto son asiáticos.
    • Nueve de los diez vehículos están propulsados por Gasolina.
    • El único vehículo del Top 10 con un tipo de propulsión diferente es el DACIA Sandero GLP (Gas Licuado de Petróleo).

Gráfica que muestra el Top10 de vehículos matriculados en 2023. Son, por este orden: Arona, Toyota Corolla, MG ZS, Toyota C-HR, Sportage, Ibiza, Nissan Qashqai, Sandero, tucson, Toyota Yaris Cross. Todos son de gasolina, excepto el Sandero que es Gas Licuado de Petróleo.

Figura 1. Gráfica "Top 10 Vehículos matriculados en el 2023"

  • Cuota de mercado por tipo de propulsión: En esta visualización representamos el porcentaje de vehículos matriculado por cada tipo de propulsión (vehículos de gasolina, diésel, eléctricos u otros). Vemos cómo la inmensa mayoría del mercado (>70%) la absorbieron vehículos de gasolina, siendo los diésel la segunda opción, y como los vehículos eléctricos alcanzaron el 5.5%.

Gráfico que muestra los vehículos vendidos en 2023 por tipo de propulsión: gasolina (71,3%), Diesel (20,5%), Eléctrico (5,5%), otros (2,7%).

Figura 2. Gráfica "Cuota de mercado por tipo de propulsión".

  • Evolución histórica de las matriculaciones: Esta visualización representa la evolución de las matriculaciones de vehículos en el tiempo. En ella se muestra el número de matriculaciones mensual entre enero de 2015 y diciembre de 2023 distinguiendo entre los tipos de propulsión de los vehículos matriculados.Podemos observar varios aspectos interesantes en este gráfico:
    • Apreciamos un comportamiento estacional anual, es decir, observamos patrones o variaciones que se repiten a intervalos regulares de tiempo. Vemos cómo recurrentemente en junio/julio aparecen altos niveles de matriculación mientras que en agosto/septiembre decrecen drásticamente. Esto es muy relevante, pues el análisis de series temporales con factor estacional tiene ciertas particularidades.
    • Es muy notable también la enorme caída de matriculaciones producida durante los primeros meses del COVID.
    • Vemos también como los niveles de matriculación post-covid son inferiores a los previos.
    • Por último, podemos observar cómo entre los años 2015 y 2023 la matriculación de vehículos eléctricos va creciendo paulatinamente.

Gráfico que muestra el número de matriculaciones mensual entre enero de 2015 y diciembre de 2023 distinguiendo entre los tipos de propulsión de los vehículos matriculados.

Figura 3. Gráfica "Matriculaciones de vehículos por tipo de propulsión".

  • Tendencia en la matriculación de vehículos eléctricos: Analizamos ahora por separado la evolución de vehículos eléctricos y no eléctricos utilizando mapas de calor como herramienta visual. Podemos observar comportamientos muy diferenciados entre ambos gráficos. Observamos cómo el vehículo eléctrico presenta una tendencia de incremento de matriculaciones año a año y, a pesar de suponer el COVID un parón en la matriculación de vehículos, los años posteriores han mantenido la tendencia creciente.

Gráfica que muestra la tendencia  en la matriculación de vehículos eléctricos a través de un mapa de calor. Se observa cómo van creciendo dichas matriculaciones.

Figura 4. Gráfica "Tendencia en la matriculación de vehículos convencionales vs eléctricos".

5.3.2. Analítica predictiva

Para dar respuesta a la última de las preguntas de forma objetiva, utilizaremos modelos predictivos que nos permitan realizar estimaciones respecto a la evolución del vehículo eléctrico en España. Como podemos observar, el modelo construido nos propone una continuación del crecimiento en las matriculaciones esperadas a lo largo del año serán de 70.000, alcanzando valores cercanos a las 8.000 matriculaciones solo en el mes de diciembre del 2024.

Gráfica que muestra el crecimiento futuro, según la estimación de nuestro modelo, de matriculaciones de vehículos eléctricos".

Figura 5. Gráfica "Predicción de matriculaciones de vehículos electricos".

5. Conclusiones del ejercicio

Como conclusión del ejercicio, podremos observar gracias a las técnicas de análisis empleadas como el vehículo eléctrico está penetrando cada vez a mayor velocidad en el parque móvil español aunque aún se encuentre a una distancia grande de otras alternativas como el Diésel o la Gasolina, por ahora liderado por el fabricante Tesla. Veremos en los próximos años si el ritmo crece al nivel necesario para alcanzar los objetivos de sostenibilidad fijados y si Tesla sigue siendo líder a pesar de la fuerte entrada de competidores asiáticos.

6. ¿Quieres realizar el ejercicio?

Si quieres conocer más sobre el Vehículo Eléctrico y poner a prueba tus capacidades analíticas, accede a este repositorio de código donde podrás desarrollar este ejercicio paso a paso.

Además, recuerda que tienes a tu disposición más ejercicios en el apartado sección de “Visualizaciones paso a paso”.


Contenido elaborado por Juan Benavente, ingeniero superior industrial y experto en Tecnologías ligadas a la economía del dato.Los contenidos y los puntos de vista reflejados en esta publicación son responsabilidad exclusiva de su autor.

calendar icon
Documentación

1. Introducción

Las visualizaciones son representaciones gráficas de datos que permiten comunicar, de manera sencilla y efectiva, la información ligada a los mismos. Las posibilidades de visualización son muy amplias, desde representaciones básicas como los gráficos de líneas, de barras o métricas relevantes, hasta visualizaciones configuradas sobre cuadros de mando interactivos.

En esta sección de “Visualizaciones paso a paso” estamos presentando periódicamente ejercicios prácticos haciendo uso de datos abiertos disponibles en  datos.gob.es u otros catálogos similares. En ellos se abordan y describen de manera sencilla las etapas necesarias para obtener los datos, realizar las transformaciones y los análisis que resulten pertinentes para, finalmente obtener unas conclusiones a modo de resumen de dicha información.

En cada uno de estos ejercicios prácticos, se utilizan desarrollos de código convenientemente documentados, así como herramientas de uso gratuito. Todo el material generado está disponible para su reutilización en el repositorio de GitHub de datos.gob.es.

Accede al repositorio del laboratorio de datos en Github.

Ejecuta el código de pre-procesamiento de datos sobre Google Colab.

 

2. Objetivo

El principal objetivo de este ejercicio es mostrar cómo realizar, de una forma didáctica, un análisis predictivo de series temporales partiendo de datos abiertos sobre el consumo de electricidad en la ciudad de Barcelona. Para ello realizaremos un análisis exploratorio de los datos, definiremos y validaremos el modelo predictivo, para por último generar las predicciones junto a sus gráficas y visualizaciones correspondientes.

Los análisis predictivos de series temporales son técnicas estadísticas y de aprendizaje automático que se utilizan para prever valores futuros en conjuntos de datos que se recopilan a lo largo del tiempo. Estas predicciones se basan en patrones y tendencias históricas identificadas en la serie temporal, siendo su objetivo principal anticipar cambios y eventos en función de datos pasados.

El conjunto de datos abiertos inicial consta de registros desde el año 2019 hasta el año 2022 ambos inclusive, por otra parte, las predicciones las realizaremos para el año 2023, del cual no tenemos datos reales.

Una vez realizado el análisis, podremos contestar a preguntas como las que se plantean a continuación:

  • ¿Cuál es la predicción futura de consumo eléctrico?
  • ¿Cómo de preciso ha sido el modelo con la predicción de datos ya conocidos?
  • ¿Qué días tendrán un consumo máximo y mínimo según las predicciones futuras?
  • ¿Qué meses tendrán un consumo medio máximo y mínimo según las predicciones futuras?

Estas y otras muchas preguntas pueden ser resueltas mediante las visualizaciones obtenidas en el análisis que mostrarán la información de una forma ordenada y sencilla de interpretar.

 

3. Recursos

3.1. Conjuntos de datos

Los conjuntos de datos abiertos utilizados contienen información sobre el consumo eléctrico en la ciudad de Barcelona en los últimos años. La información que aportan es el consumo en (MWh) desglosados por día, sector económico, código postal y tramo horario.

Estos conjuntos de datos abiertos son publicados por el Ayuntamiento de Barcelona en el catálogo de datos.gob.es, mediante ficheros que recogen los registros de forma anual. Cabe destacar que el publicador actualiza estos conjuntos de datos con nuevos registros con frecuencia, por lo que hemos utilizado solamente los datos proporcionados desde el 2019 hasta el 2022 ambos inclusive.

Estos conjuntos de datos también se encuentran disponibles para su descarga en el siguiente repositorio de Github

 

3.2. Herramientas

Para la realización del análisis se ha utilizado el lenguaje de programación Python escrito sobre un Notebook de Jupyter alojado en el servicio en la nube de Google Colab.

"Google Colab" o, también llamado Google Colaboratory, es un servicio en la nube de Google Research que permite programar, ejecutar y compartir código escrito en Python o R sobre un Jupyter Notebook desde tu navegador, por lo que no requiere configuración. Este servicio es gratuito.

Para la creación de las visualizaciones interactivas se ha usado la herramienta Looker Studio.

"Looker Studio", antiguamente conocido como Google Data Studio, es una herramienta online que permite realizar visualizaciones interactivas que pueden insertarse en sitios web o exportarse como archivos.

Si quieres conocer más sobre herramientas que puedan ayudarte en el tratamiento y la visualización de datos, puedes recurrir al informe "Herramientas de procesado y visualización de datos".

 

 

4. Análisis predictivo de series temporales

El análisis predictivo de series temporales es una técnica que utiliza datos históricos para predecir valores futuros de una variable que cambia con el tiempo. Las series temporales son datos que se recopilan en intervalos regulares, como días, semanas, meses o años. No es el objetivo de este ejercicio explicar en detalle las características de las series temporales, ya que nos centramos en explicar brevemente el modelo de predicción. No obstante, si quieres saber más al respecto, puedes consultar el siguiente manual.

Este tipo de análisis se basa en el supuesto de que los valores futuros de una variable estarán correlacionados con los valores históricos. Utilizando técnicas estadísticas y de aprendizaje automático, se pueden identificar patrones en los datos históricos y utilizarlos para predecir valores futuros.

El análisis predictivo realizado en el ejercicio ha sido dividido en cinco fases; preparación de los datos, análisis exploratorio de los datos, entrenamiento del modelo, validación del modelo y predicción de valores futuros), las cuales se explicarán en los próximos apartados.

Los procesos que te describimos a continuación los encontrarás desarrollados y comentados en el siguiente Notebook ejecutable desde Google Colab junto al código fuente que está disponible en nuestra cuenta de Github.  

Es aconsejable ir ejecutando el Notebook con el código a la vez que se realiza la lectura del post, ya que ambos recursos didácticos son complementarios en las futuras explicaciones

 

4.1 Preparación de los datos

Este apartado podrás encontrarlo en el punto 1 del Notebook.

En este apartado se importan los conjuntos de datos abiertos descritos en los puntos anteriores que utilizaremos en el ejercicio, prestando especial atención a su obtención y a la validación de su contenido, asegurándonos que se encuentran en el formato adecuado y consistente para su procesamiento y que no contienen errores que puedan condicionar los pasos futuros.

 

4.2 Análisis exploratorio de los datos (EDA)

Este apartado podrás encontrarlo en el punto 2 del Notebook.

En este apartado realizaremos un análisis exploratorio de los datos (EDA), con el fin de interpretar adecuadamente los datos de origen, detectar anomalías, datos ausentes, errores u outliers que pudieran afectar a la calidad de los procesos posteriores y resultados.

A continuación, en la siguiente visualización interactiva, podrás inspeccionar la tabla de datos con los valores de consumo históricos generada en el punto anterior pudiendo filtrar por periodo temporal concreto. De esta forma podemos comprender, de una forma visual, la principal información de la serie de datos.

Una vez inspeccionada la visualización interactiva de la serie temporal, habrás observado diversos valores que potencialmente podrían ser considerados como outliers, como se muestra en la siguiente figura. También podemos calcular de forma numérica estos outliers, como se muestra en el notebook.

Figura 1. Outliers de la serie temporal con datos históricos
 

Una vez evaluados los outliers, para este ejercicio se ha decidido modificar únicamente el registrado en la fecha "2022-12-05". Para ello se sustituirá el valor por la media del registrado el día anterior y el día siguiente.

La razón de no eliminar el resto de outliers es debido a que son valores registrados en días consecutivos, por lo que se presupone que son valores correctos afectados por variables externas que se escapan del alcance del ejercicio. Una vez solucionado el problema detectado con los outliers, esta será la serie temporal de datos que utilizaremos en los siguientes apartados.

Figura 2. Serie temporal de datos históricos una vez tratados los outliers

 

Si quieres conocer más sobre estos procesos puedes recurrir a la Guía Práctica de Introducción al Análisis Exploratorio de Datos.

 

4.3 Entrenamiento del modelo

Este apartado podrás encontrarlo en el punto 3 del Notebook.

En primer lugar, creamos dentro de la tabla de datos los atributos temporales (año, mes, día de la semana y trimestre). Estos atributos son variables categóricas que ayudan a garantizar que el modelo sea capaz de capturar con precisión las características y patrones únicos de estas variables. Mediante las siguientes visualizaciones de diagramas de cajas, podemos ver su relevancia dentro de los valores de la serie temporal.

 

Figura 3. Diagramas de cajas de los atributos temporales generados

 

Podemos observar ciertos patrones en las gráficas anteriores como los siguientes:

  • Los días laborales (lunes a viernes) presentan un mayor consumo que los fines de semana.
  • El año que valores de consumo más bajos presenta es el 2020, esto entendemos que se debe a la reducción de actividad servicios e industrial durante la pandemia.
  • El mes que mayor consumo presenta es julio, lo cual es entendible debido al uso de aparatos de aire acondicionado.
  • El segundo trimestre es el que presenta valores más bajos de consumo, destacando abril como el mes con valores más bajos.

A continuación, dividimos la tabla de datos en set de entrenamiento y en set de validación.  El set de entrenamiento se utiliza para entrenar el modelo, es decir, el modelo aprende a predecir el valor de la variable objetivo a partir de dicho set, mientras que el set de validación se utiliza para evaluar el rendimiento del modelo, es decir, el modelo se evalúa con los datos de dicho set para determinar su capacidad para predecir los nuevos valores.

Esta división de los datos es importante para evitar el sobreajuste siendo la proporción típica de los datos que se utilizan para el set de entrenamiento de un 70 % y el set de validación del 30% aproximadamente. Para este ejercicio hemos decidido generar el set de entrenamiento con los datos comprendidos entre el "01-01-2019" hasta el "01-10-2021", y el set de validación con los comprendidos entre el "01-10-2021" y el "31-12-2022" como podemos apreciar en la siguiente gráfica.

Figura 4. Serie temporal de datos históricos dividida en set de entrenamiento y set de validación

 

Para este tipo de ejercicio, tenemos que utilizar algún algoritmo de regresión. Existen diversos modelos y librerías que pueden utilizarse para predicción de series temporales. En este ejercicio utilizaremos el modelo “Gradient Boosting”, modelo de regresión supervisado que se trata de un algoritmo de aprendizaje automático utilizado para predecir un valor continúo basándose en el entrenamiento de un conjunto de datos que contienen valores conocidos para la variable objetivo (en nuestro ejemplo la variable “valor”) y los valores de las variables independientes (en nuestro ejercicio los atributos temporales).

Está basado en árboles de decisión y utiliza una técnica llamada "boosting" para mejorar la precisión del modelo siendo conocido por su eficiencia y capacidad para manejar una variedad de problemas de regresión y clasificación.

Sus principales ventajas son el alto grado de precisión, su robustez y flexibilidad, mientras que alguna de sus desventajas son la sensibilidad a valores atípicos y que requiere una optimización cuidadosa de los parámetros.

Utilizaremos el modelo de regresión supervisado ofrecido en la librería XGBBoost, el cuál puede ajustarse con los siguientes parámetros:

  • n_estimators: parámetro que afecta al rendimiento del modelo indicando el número de árboles utilizados. Un mayor número de árboles generalmente resulta un modelo más preciso, pero también puede llevar más tiempo de entrenamiento.
  • early_stopping_rounds: parámetro que controla el número de rondas de entrenamiento que se ejecutarán antes de que el modelo se detenga si el rendimiento en el conjunto de validación no mejora.
  • learning_rate: controla la velocidad de aprendizaje del modelo. Un valor más alto hará que el modelo aprenda más rápido, pero puede provocar un sobreajuste.
  • max_depth: controla la profundidad máxima de los árboles en el bosque. Un valor más alto puede proporcionar un modelo más preciso, pero también puede provocar un sobreajuste.
  • min_child_weight: controla el peso mínimo de una hoja. Un valor más alto puede ayudar a prevenir el sobreajuste.
  • gamma: controla la cantidad de reducción de la pérdida esperada que se necesita para dividir un nodo. Un valor más alto puede ayudar a prevenir el sobreajuste.
  • colsample_bytree: controla la proporción de las características que se utilizan para construir cada árbol. Un valor más alto puede ayudar a prevenir el sobreajuste.
  • subsample: controla la proporción de los datos que se utilizan para construir cada árbol. Un valor más alto puede ayudar a prevenir el sobreajuste.

Estos parámetros se pueden ajustar para mejorar el rendimiento del modelo en un conjunto de datos específico. Se recomienda experimentar con diferentes valores de estos parámetros para encontrar el valor que proporciona el mejor rendimiento en tu conjunto de datos.

Por último, mediante una gráfica de barras observaremos de forma visual la importancia de cada uno de los atributos durante el entrenamiento del modelo. Se puede utilizar para identificar los atributos más importantes en un conjunto de datos, lo que puede ser útil para la interpretación del modelo y la selección de características.

Figura 5. Gráfica de barras con importancia de los atributos temporales

4.4 Entrenamiento del modelo

Este apartado podrás encontrarlo en el punto 4 del Notebook.

Una vez entrenado el modelo, evaluaremos cómo de preciso es para los valores conocidos del set de validación.

Podemos evaluar de forma visual el modelo ploteando la serie temporal con los valores conocidos junto a las predicciones realizadas para el set de validación como se muestra en la siguiente figura.

Figura 6. Serie temporal con los datos del set de validación junto a los de la predicción 

 

También podemos evaluar de forma numérica la precisión del modelo mediante distintas métricas. En este ejercicio hemos optado por utilizar la métrica del error porcentual absoluto medio (MAPE), el cuál ha sido de un 6,58%. La precisión del modelo se considera alta o baja dependiendo del contexto y de las expectativas en dicho modelo, generalmente un MAPE se considera bajo cuando es inferior al 5%, mientras que se considera alto cuando es superior al 10%. En este ejercicio, el resultado de la validación del modelo puede ser considerado un valor aceptable.

Si quieres consultar otro tipo de métricas para evaluar la precisión de modelos aplicados a series temporales, puedes consultar el siguiente enlace.

 

4.5 Predicciones valores futuros

Este apartado podrás encontrarlo en el punto 5 del Notebook.

Una vez generado el modelo y evaluado su rendimiento MAPE = 6,58 %, pasamos a aplicar dicho modelo al total de datos conocidos, con la finalidad de predecir los valores de consumo eléctrico no conocidos del 2023.

En primer lugar, volvemos a entrenar el modelo con los valores conocidos hasta finales del 2022, sin dividir en set de entrenamiento y validación. Por último, calculamos los valores futuros para el año 2023.

Figura 7. Serie temporal con los datos históricos y la predicción para el 2023

 

En la siguiente visualización interactiva puedes observar los valores predichos para el año 2023 junto a sus principales métricas, pudiendo filtrar por periodo temporal.

 

Mejorar los resultados de los modelos predictivos de series temporales es un objetivo importante en la ciencia de datos y el análisis de datos. Varias estrategias que pueden ayudar a mejorar la precisión del modelo del ejercicio son el uso de variables exógenas, la utilización de más datos históricos o generación de datos sintéticos, optimización de los parámetros, …

Debido al carácter divulgativo de este ejercicio y para favorecer el entendimiento de los lectores menos especializados, nos hemos propuesto explicar de una forma lo más sencilla y didáctica posible el ejercicio. Posiblemente se te ocurrirán muchas formas de optimizar el modelo predictivo para lograr mejores resultados, ¡Te animamos a que lo hagas!

 

5. Conclusiones ejercicio

Una vez realizado el ejercicio, podemos apreciar distintas conclusiones como las siguientes:

  • Los valores máximos para las predicciones de consumo en el 2023 se dan en la última quincena de julio superando valores de 22.500.000 MWh
  • El mes con un mayor consumo según las predicciones del 2023 será julio, mientras que el mes con un menor consumo medio será noviembre, existiendo una diferencia porcentual entre ambos del 25,24%
  • La predicción de consumo medio diario para el 2023 es de 17.259.844 MWh, un 1,46% inferior a la registrada entre los años 2019 y 2022.

Esperemos que este ejercicio te haya resultado útil para el aprendizaje de algunas técnicas habituales en el estudio y análisis de datos abiertos. Volveremos para mostraros nuevas reutilizaciones. ¡Hasta pronto!

calendar icon
Documentación

Para poder extraer todo el valor de los datos, es necesario clasificarlos, filtrarlos y cruzarlos mediante procesos de analítica que nos ayuden a sacar conclusiones, convirtiendo los datos en información y conocimiento. Tradicionalmente la analítica de datos se divide en 3 categorías:

  • Analítica descriptiva, que nos ayuda a entender la situación actual, qué ha pasado para llegar hasta ella y por qué se ha producido.

  • Analítica predictiva, cuyo objetivo es anticipar hechos relevantes. Es decir, nos cuenta qué va a pasar para que un ser humano pueda tomar una decisión.

  • Analítica prescriptiva, donde se proporciona información sobre las decisiones más acertadas en base a una serie de escenarios futuros.  Es decir, nos indica qué hacer.

El tercer informe de la serie Awareness, Inspire, Action se centra en el segundo estadio, el de la Analítica predictiva. Para ello sigue la misma metodología que los dos informes anteriores, dedicados a la Inteligencia Artificial y el Procesamiento del Lenguaje Natural.

La analítica predictiva nos permite responder preguntas de negocio como ¿sufriremos una rotura de stock? ¿Bajará la cotización de una determinada acción? O ¿Nos visitarán más turistas el próximo puente? En base a esta información las empresas pueden definir su estrategia de negocio, y los organismos públicos elaborar políticas que respondan a las necesidades de los ciudadanos.

Tras una breve introducción que contextualiza la materia a tratar y explica la metodología, el informe, elaborado por Alejandro Alija, se desarrolla de la siguiente manera:

  • Awareness. En la sección Awareness se explican los conceptos clave, destacando los tres atributos de la analítica predictiva: el énfasis en la predicción, la relevancia para el negocio de los conocimientos resultantes y su tendencia a la democratización para extender su uso más allá de los usuarios especialistas y científicos de datos. En este apartado también se mencionan los modelos matemáticos de los que hace uso y se detallan algunos de sus hitos más importantes a lo largo de la historia, como el protocolo de Kyoto o su utilidad para detectar la fuga de clientes. 

  • Inspire. La sección Inspire analiza algunos de los casos de uso de la analítica predictiva con más relevancia en la actualidad en tres sectores muy diferentes. Empieza con el sector industrial, donde se explica cómo funciona el mantenimiento predictivo y la detección de anomalías. Continua con ejemplos relativos a la predicción de precios y demanda, en la cadena de distribución de un supermercado y en el sector energía. Y finaliza con el sector salud y el diagnóstico aumentado de imagen médica.

  • Action: En la sección Action se desarrolla de forma práctica un caso de uso concreto, utilizando para ello datos y herramientas tecnológicas reales. En este caso el conjunto de datos seleccionado es accidentes de tráfico en la ciudad de Madrid, publicado por el Ayuntamiento de Madrid. A través de la metodología recogida en la siguiente figura, se explica de manera sencilla cómo utilizar técnicas de análisis de series temporales para modelar y predecir el número de accidentes en los meses futuros.

El informe finaliza con la sección Última parada, donde se recopilan cursos, libros y artículos de interés para aquellos usuarios que quieran seguir avanzando en la materia.

En este vídeo, su autor te cuanta más sobre el informe y la analítica predictiva.

A continuación, puedes descargarte el informe completo en pdf y word (versión reutilizable), así como acceder al código utilizado en el ejemplo de Action en este enlace.

calendar icon