Vivimos rodeados de resúmenes generados por inteligencia artificial (IA). Tenemos la opción de generarlos desde hace meses, pero ahora se imponen en las plataformas digitales como el primer contenido que ven nuestros ojos al usar un buscador o abrir un hilo de emails. En plataformas como Microsoft Teams o Google Meet las reuniones por videollamada se transcriben y se resumen en actas automáticas para quien no ha podido estar presente, pero también para quien ha estado. Sin embargo, aquello que un modelo de lenguaje ha considerado importante, ¿es realmente lo importante para quien recibe el resumen?
En este nuevo contexto, la clave es aprender a recuperar el sentido detrás de tanta información resumida. Estas tres estrategias te ayudarán a transformar el contenido automático en una herramienta de comprensión y toma de decisiones.
1. Haz preguntas expansivas
Solemos resumir para reducir un contenido que no somos capaces de abarcar, pero corremos el riesgo de asociar breve con significativo, una equivalencia que no siempre se cumple. Por tanto, no deberíamos enfocarnos desde el inicio en resumir, sino en extraer información relevante para nosotros, nuestro contexto, nuestra visión de la situación y nuestra manera de pensar. Más allá del prompt básico “hazme un resumen”, esta nueva manera de enfocar un contenido que se nos escapa consiste en cruzar datos, conectar puntos y sugerir hipótesis, lo que llaman sensemaking o “construcción de sentido”. Y pasa, en primer lugar, por tener claro qué queremos saber.
Situación práctica:
Imaginemos una reunión larga a la que no hemos podido acudir. Esa tarde, recibimos en nuestro correo electrónico un resumen de los temas tratados. No siempre es posible, pero una buena práctica en este punto, si nuestra organización lo permite, es no quedarnos solo con el resumen: si está permitido, y siempre respetando las directrices de confidencialidad, sube la transcripción completa a un sistema conversacional como Copilot o Gemini y haz preguntas específicas:
-
¿Qué tema se repitió más o recibió más atención durante la reunión?
-
En una reunión anterior, la persona X usó este argumento. ¿Se usó de nuevo? ¿Lo discutió alguien? ¿Se dio por válido?
-
¿Qué premisas, suposiciones o creencias están detrás de esta decisión que se ha tomado?
-
Al final de la reunión, ¿qué elementos parecen más críticos para el éxito del proyecto?
-
¿Qué señales anticipan posibles retrasos o bloqueos? ¿Cuáles tienen que ver o podrían afectar a mi equipo?
Cuidado con:
Ante todo, revisa y confirma las atribuciones. Los modelos generativos son cada vez más precisos, pero tienen una gran capacidad para mezclar información real con información falsa o generada. Por ejemplo, pueden atribuir una frase a alguien que no la dijo, relacionar como causa-efecto ideas que en realidad no tenían conexión, y seguramente lo más importante: asignar tareas o responsabilidades de próximos pasos a alguien a quien no le corresponden.
2. Pide contenido estructurado
Los buenos resúmenes no son más cortos, sino más organizados, y el texto redactado no es el único formato al que podemos recurrir. Busca la eficacia y pide a los sistemas conversacionales que te devuelvan tablas, categorías, listas de decisiones o mapas de relaciones. La forma condiciona el pensamiento: si estructuras bien la información, la entenderás mejor y también la transmitirás mejor a otros, y por tanto irás más lejos con ella.
Situación práctica:
En este caso, imaginemos que recibimos un informe largo sobre el avance de varios proyectos internos de nuestra empresa. El documento tiene muchas páginas con párrafos descriptivos de estado, feedback, fechas, imprevistos, riesgos y presupuestos. Leerlo todo línea por línea sería imposible y no retendríamos la información. La buena práctica aquí es pedir una transformación del documento que nos sea útil de verdad. Si es posible, sube el informe al sistema conversacional y solicita contenido estructurado de manera exigente y sin escatimar en detalles:
-
Organiza el informe en una tabla con las siguientes columnas: proyecto, responsable, fecha de entrega, estado, y una columna final que indique si ha ocurrido algún imprevisto o se ha materializado algún riesgo. Si todo va bien, imprime en esa columna “CORRECTO”.
-
Genera un calendario visual con los entregables, sus fechas de entrega y los responsables, que empiece el 1 de octubre de 2025 y termine el 31 de enero de 2026, en forma de diagrama de Gantt.
-
Quiero una lista en la que aparezcan exclusivamente el nombre de los proyectos, su fecha de inicio y su fecha de entrega. Ordena por la fecha de entrega, las más cercanas primero.
-
Del apartado de feedback de los clientes que encontrarás en cada proyecto, crea una tabla con los comentarios más repetidos y a qué áreas o equipos suelen hacer referencia. Colócalos en orden, de los que más se repiten a los que menos.
-
Dame la facturación de los proyectos que están en riesgo de no cumplir plazos, indica el precio de cada uno y el total.
Cuidado con:
La ilusión de veracidad y exhaustividad que nos va a proporcionar un texto limpio, ordenado, automático y con fuentes es enorme. Un formato claro, como una tabla, una lista o un mapa, puede dar una falsa sensación de precisión. Si los datos de origen son incompletos o erróneos, la estructura solo maquilla el error y tendremos más dificultades para verlo. Las producciones de la IA suelen ser casi perfectas. Como mínimo, y si el documento es muy extenso, haz comprobaciones aleatorias ignorando la forma y centrándote en el contenido.
3. Conecta los puntos
El sentido estratégico rara vez está en un texto aislado, y mucho menos en un resumen. El nivel avanzado en este caso consiste en pedir al chat multimodal que cruce fuentes, compare versiones o detecte patrones entre varios materiales o formatos, como por ejemplo la transcripción de una reunión, un informe interno y un artículo científico. Lo que interesa realmente ver son claves comparativas como los cambios evolutivos, las ausencias o las inconsistencias.
Situación práctica:
Imaginemos que estamos preparando una propuesta para un nuevo proyecto. Tenemos varios materiales: la transcripción de una reunión del equipo directivo, el informe interno del año anterior y un artículo reciente sobre tendencias del sector. En lugar de resumirlos por separado, puedes subirlos al mismo hilo de conversación o a un chat que hayas personalizado sobre el tema, y pedirle acciones más ambiciosas.
-
Compara estos tres documentos y dime qué prioridades coinciden en todos, aunque se expresen de maneras distintas.
-
¿Qué temas del informe interno no se han mencionado en la reunión? Genera una hipótesis para cada uno sobre por qué no se han tratado.
-
¿Qué ideas del artículo podrían reforzar o cuestionar las nuestras? Dame ideas fuerza de la investigación que no estén reflejadas en nuestro informe interno.
-
Busca artículos en prensa de los últimos seis meses que avalen las ideas fuerza del informe interno.
-
Encuentra fuentes externas que complementen la información ausente en estos tres documentos sobre el tema X y genera un informe panorámico con referencias.
Cuidado con:
Es muy habitual que los sistemas de IA simplifiquen de forma engañosa debates complejos, no porque tengan un objetivo oculto sino porque en el entrenamiento se les ha premiado siempre la sencillez y la claridad. Además, la generación automática introduce un riesgo de autoridad: como el texto se presenta con apariencia de precisión y neutralidad, asumimos que es válido y útil. Y, por si fuera poco, los resúmenes estructurados se copian y comparten rápido. Antes de reenviar, asegúrate de que el contenido está validado, sobre todo si contiene decisiones, nombres o datos sensibles.
Conclusión
Los modelos basados en IA pueden ayudarte a visualizar convergencias, lagunas o contradicciones y, a partir de ahí, formular hipótesis o líneas de acción. Se trata de encontrar con mayor agilidad eso tan valioso que llamamos insights. Ese es el paso del resumen al análisis: lo más importante no es comprimir la información, sino seleccionarla bien, relacionarla y conectarla con el contexto. Intensificar la exigencia desde el prompt es la manera más adecuada de trabajar con los sistemas IA, pero también nos exige un esfuerzo personal previo de análisis y aterrizaje.
Contenido elaborado por Carmen Torrijos, experta en IA aplicada al lenguaje y la comunicación. Los contenidos y los puntos de vista reflejados en esta publicación son responsabilidad exclusiva de su autor.